人类看到黑洞吞噬恒星的过程
人类一直以来对黑洞知之甚少,尤其是黑洞吞噬恒星等等。但是最近科学家可能观测到超大质量黑洞吞噬恒星的整个过程。
在银河系和其他几乎每一个大星系的中心,都潜藏着一个深层的宇宙奥秘——一个超大质量黑洞。这些天体把数百万至数十亿个太阳的质量压缩到比太阳系还小的区域内,它们是如此奇怪,以至于看起来非常神秘。还没有科学家能够解释,自然界是如何将这么多物质压缩到如此小的空间中。但可以肯定的是,超大质量黑洞伸出了无形的“引力之手”,以深刻而微妙的方式影响周围星系的形成。科学家希望通过研究这些幽灵般的黑洞的生长及行为,揭开星系诞生和演化的秘密。
但问题是,超大质量黑洞不发光,它们大部分时间都在休眠,我们看不见。只有当它们“进食”时,才会苏醒过来,但超大质量黑洞的食物极其少有,因为围绕它们旋转的大多数气体、灰尘和恒星都待在稳定的轨道上,超大质量黑洞根本吃不到。它们总是很饥饿,每当有数量可观的东西恰巧掉入时,超大质量黑洞就会“疯狂进食”,这一现象从非常非常远的地方就能看到。
在过去半个世纪的大部分时间里,科学家主要通过观测类星体来研究这类正在享受盛宴的黑洞。类星体在1963年由天文学家马腾·施密特(Maarten Schmidt)发现,它们是活动星系的超亮中心,每一个都比数十亿个太阳还亮,无论你处在宇宙的哪个角落,都可以观测到它们。当大量气体尘埃冲向一个超大质量黑洞,绕黑洞转动时,会发热发光,持续数十万或数百万年,在这个时候就被认为形成了类星体。
然而,类星体并不是理想的研究对象。它们是一些极端事件,通常都相当遥远且相对罕见,其生命周期只构成了超大质量黑洞一生的一小部分。因此,它们提供的视角很有限,天文学家无法由此获知我们星系的超大质量黑洞平常是如何“进食”和生长的。虽然研究人员还可观测围绕超大质量黑洞快速转动的恒星,通过计算恒星的速度来研究它们,但这种方法只适用于非常近的天体——比如位于银河系和临近星系中的天体,只有在这个范围内,当前的望远镜才可以分辨出单个恒星。
1988年,英国天文学家马丁·里斯(Martin Rees)提出了研究超大质量黑洞的第三种方法——直到最近,这种方法才真正显示出了它的优越性。天文学家可以通过寻找来源于黑洞附近短暂而明亮的光芒来研究黑洞。这类爆发被称为潮汐瓦解事件(tidal disruption event,TDE),当一个超大质量黑洞吞噬一颗不幸的恒星时就会发生。潮汐瓦解事件会持续几个月而非几千年,研究人员可以完整地见证从“进食”开始至结束的整个过程,并且在这个过程中黑洞周围足够明亮,不管是发生在附近还是遥远的星系中,我们都能够观测到。
潮汐力瓦解恒星
潮汐瓦解事件非常剧烈,远非海岸边冲走游客浴巾的潮水能比。不过,两者在原理上有相同之处。地球上的潮汐主要由月球的引力拖拽引起,即在靠近月球的一侧,地球受到的拉拽更强。月球对地球远端和近端的引力差被称为潮汐力。在地球朝向月球的一侧,潮汐力会产生一个高潮,有点反常的是,它也会在相反的一面产生一个高潮,当然潮汐力也会产生一个相应的低潮,不过是在与地月轴线的夹角为90度的地方。当一颗恒星在一个超大质量黑洞附近时——可能是被附近另一颗恒星的引力推到那里的——强烈的潮汐力可以将它撕成碎片。